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Abstract

Statistical measures coming from information theory
represent interesting bases for image and video process-
ing tasks such as image retrieval and video object track-
ing. For example, let us mention the entropy and the
Kullback-Leibler divergence. Accurate estimation of these
measures requires to adapt to the local sample density, es-
pecially if the data are high-dimensional. The k nearest
neighbor (kNN) framework has been used to define effi-
cient variable-bandwidth kernel-based estimators with such
a locally adaptive property. Unfortunately, these estimators
are computationally intensive since they rely on searching
neighbors among large sets of d-dimensional vectors. This
computational burden can be reduced by pre-structuring
the data, e.g. using binary trees as proposed by the Ap-
proximated Nearest Neighbor (ANN) library. Yet, the recent
opening of Graphics Processing Units (GPU) to general-
purpose computation by means of the NVIDIA CUDA API
offers the image and video processing community a power-
ful platform with parallel calculation capabilities. In this
paper, we propose a CUDA implementation of the “brute
force” kNN search and we compare its performances to sev-
eral CPU-based implementations including an equivalent
brute force algorithm and ANN. We show a speed increase
on synthetic and real data by up to one or two orders of
magnitude depending on the data, with a quasi-linear be-
havior with respect to the data size in a given, practical
range.

1. Introduction

Information theory provides robust! statistical measures
for image and video processing tasks such as image or
video restoration, segmentation, retrieval, and video ob-
ject tracking. Such measures include entropies and di-
vergences. In particular, the Kullback-Leibler divergence

'In the usual sense: reduced sensitivity to outliers in the data.

(KLD) has been successfully used as a (dis)similarity mea-
sure for region-of-interest tracking [3] or content-based im-
age retrieval [1, 7, 9]. Let P and @ be two probability dis-
tributions with values in R?. The KLD is a measure of the
difference between P and @) given by, in the continuous
case,

fr(z)
fo(x)

where fp and fg denote the density functions of P and @,
respectively. In practice, the estimation of (1) from point
sets P = {pl;an to 7pN77} and Q = {Q1’q23 to 7qNQ}
drawn from P and @), respectively, is a tough problem be-
cause of the often sparse and usually unevenly sampling
of R?. As d gets larger, the estimation using classical
techniques tends to get less accurate. This phenomenon
is referred to as the curse of dimensionality. The k near-
est neighbor (kNN) framework allows to adapt to the local
point density, accounting for both the sparsity and the ir-
regularity of the space sampling. The following kNN-based
estimator of DKL has been proposed
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where pi(p;, S) denotes the distance between point p; and
its kth nearest neighbor in the point set S. The distance
is normally computed in the Euclidean sense. One can see
that, behind its apparent simplicity, the actual computation
of (2) is highly computationally demanding. Conceptually,
for each point of P, the distances to every other point of
P and to every point of Q must be computed, then sorted
(separately for P and Q) to determine kth nearest neigh-
bors. This represents a polynomial complexity in terms of



point set size and will be referred to as the “brute force” ap-
proach. Several kNN algorithms [2] have been proposed in
order to reduce the complexity of these kth nearest neigh-
bor searches. They generally seek to reduce the number of
distances that have to be computed using, for instance, a
pre-arrangement of the data using a kd-tree structure.

Through the C-based API CUDA (Compute Unified De-
vice Architecture), NVIDIA? recently brought the power of
parallel computing on Graphics Processing Units (GPU) to
general-purpose algorithmic [4, 5]. This opportunity repre-
sents a promising alternative to solve the kNN problem in
reasonable time. In this paper, we propose a CUDA imple-
mentation for solving the brute force kNN search problem.
We compared its performances to several CPU-based im-
plementations. Besides being faster by up to two orders
of magnitude, we noticed that the dimension of the sam-
ple points has only a small impact on the computation time
with the proposed CUDA implementation, contrary to the
C-based implementations.

2. Brute force KNN search
2.1. Principle

Let R = {ry,r2, -+ ,mm} be aset of m reference points
with values in R, and let Q = {q1,q2, - - , ¢, } be a set of
n query points in the same space. The kNN search problem
consists in searching the k nearest neighbors of each query
point ¢; € Q in the reference set R given a specific dis-
tance. Commonly, the Euclidean or the Manhattan distance
is used but any other distance can be used instead such as
the Chebyshev norm or the Mahalanobis distance. Figure 1
illustrates the kNN problem with £ = 3 and for a point set
with values in R2.

One way to search the kNN is the “brute force” algorithm
o
° ®

Figure 1. Illustration of the kNN search problem for £ = 3. The
blue points correspond to the reference points and the red cross
corresponds to the query point. The circle gives the distance be-
tween the query point and the third closest reference point.

(noted BF) also called “exhaustive search”. For each query
point g;, the BF algorithm is the following:

’http://www.nvidia.com/page/home.html
http://www.nvidia.com/object/cuda-home.html

1. Compute all the distances between ¢; and 7;, j €
[1,m].

2. Sort the computed distances.

3. Select the k reference points corresponding to the k
smallest distances.

4. Repeat steps 1. to 3. for all query points.

The main issue of this algorithm is its huge complexity:
O(nmd) for the nm distances computed (approximately
2nmd additions/subtractions and nmd multiplications) and
O(nmlogm) for the n sorts performed (mean number of
comparisons).

Several kNN algorithms have been proposed in order to re-
duce the computation time. Generally, the idea is to reduce
the number of distances computed [6]. For instance, some
algorithms [2] partition the point sets using a kd-tree struc-
ture, and only compute distances within nearby volumes.
As will be seen in Section 3, according to our experiments,
the use of such a method is generally faster than a CPU-
based BF method up to a factor 10.

2.2. Sorting algorithm

The second step of the BF algorithm is the sort of the
computed distances. In this section, we discuss the choice
of the sorting algorithm.

The Quicksort being a popular algorithm, let us say a

few words about it. In practice, it is one of the fastest algo-
rithms. However, it is recursive and CUDA does not allow
recursive functions. As a consequence, it cannot be used in
our implementation.
The comb sort complexity is O(n logn) both in the worst
and average cases. It is also among the fastest algorithms
and simple to implement. Nevertheless, keeping in mind
that we are only interested in the k smallest elements, k be-
ing usually very small compared to Np and Ng, we consid-
ered using an insertion sort variant which only outputs the
k smallest elements. As will be illustrated in Section 3.2,
this algorithm is faster than the comb sort for small values
of parameter k.

2.3. CUDA implementation

The BF method is by nature highly-parallelizable. This
property makes the BF method perfectly suitable for a GPU
implementation. Let us remind that the BF method has two
steps: the distance computation and the sorting. For sim-
plicity, let us assume here that the reference and query sets
both contain n points.

The computation of the n? distances can be fully paral-
lelized since the distances between pairs of points are in-
dependent. Two kinds of memory are used: global mem-
ory and texture memory. The global memory has a huge



bandwith but the performances decrease if the memory ac-
cesses are non-coalesced. In such a case, the texture mem-
ory is a good option because there are less penalties for non-
coalesced readings. As a consequence, we use global mem-
ory for storing the query set (coalesced readings), and tex-
ture memory for the reference set (non-coalesced readings).
Therefore, we obtain better performances than when using
global memory and shared memory? as proposed in the ma-
trix multiplication example provided in the CUDA SDK.
The n sortings can also be parallelized while the operations
performed during a given sorting of n values are clearly
not independent of each other. Each thread sorts all the
distances computed for a given query point. The sorting
consists in comparing and exchanging many distances in a
non-predictable order. Therefore, the memory accesses are
not coalesced, indicating that the texture memory could be
appropriate. However, it is a read-only memory. Only the
global memory allows readings and writings. This penal-
izes the sorting performance.

3. Experiments
3.1. Setup

The computer used to do this comparison is a Pen-
tium 4 3.4 GHz with 2GB of DDR2 memory PC2-5300
(4x512MB dual-channel memory). The graphic card used
is a NVIDIA GeForce 8800 GTX with 768MB of DDR3
memory and 16 multiprocessors interfaced with a PCI-
express 1.1 port.

3.2. Comb sort vs. insertion sort

Figure 2 shows the computation time of the kNN search
as a function of the parameter k for the comb sort and the
insertion sort, both implemented in CUDA. For this exper-
iment, 4800 points (both reference and query sets) drawn
uniformly in a 64 dimensional space were used. Using the
comb sort, the computation time is constant whatever the
value k because all the distances are sorted. On the con-
trary, using the insertion sort, the computation time linearly
increases with k. We define kg as follow: the comb sort and
the insertion sort are performed in the same computation
time for & = kg. ko is the abscissa value of the intersec-
tion of the two straight lines shown in Fig. 2. For k < ko,
the insertion sort is faster than comb sort. Beyond kg, the
comb sort is the fastest. Figure 3 shows the value of &y as
a function of the size of sets. ko approximately increases
linearly. According to our experiments, the affine function
approximating this increase, computed by linear regression,
is given by:

ko(n) = 0.0247n + 1.3404 3)

3Memory shared by a set of threads with high bandwidth and no penal-
ties for random memory accesses.

where n is the size of the reference and query sets. The judi-
cious choice of the sorting algorithm used depends both on
the size of sets and on the parameter k. In our experiments,
we used the insertion sort because it provided the smallest
computation time due to the value of k£ and the size of point
sets used.
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Figure 2. Evolution of the computation time for comb sort (blue
line) and insertion sort (red line) algorithms as a function of pa-
rameter k. For this experiment, 4800 points (reference and query
sets) are used in a 64 dimensional space. The computation time is
constant for the comb sort and linearly increases for the insertion
sort. The intersection represents the value of £ where both algo-
rithms provides a similar computation time. This & value is noted
ko.
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Figure 3. Evolution of k¢ as a function of the size of sets in a 64
dimensional space. The red dashed line is the linear approxima-
tion of the experimental curve (blue solid line) computed by linear
regression. Bellow this line, the insertion sort is faster than the
comb sort algorithm, and above this line, comb sort is the fastest
algorithm.

3.3. Performances

The initial goal of our work was to speed up the kNN
search process in a Matlab program. In order to speed up



computations, Matlab allows to use external C functions
(Mex functions). Likewise, a recent Matlab plug-in allows
to use external CUDA functions. In this section, we show,
through a computation time comparison, that CUDA greatly
accelerates the kNN search process. We compare three dif-
ferent implementations of the BF method and one method
based on kd-tree. This kd-tree based KNN implementa-
tion is the ANN C++ library (Approximate Nearest Neigh-
bor) [2, 8]. ANN supports both exact and approximate near-
est neighbor searching in spaces of various dimensions. We
used the exact search.

The methods compared are:

e BF method implemented in Matlab (noted BF-Matlab)
e BF method implemented in C (noted BF-C)

e BF method implemented in CUDA (noted BF-CUDA)
e ANN C++ library (noted ANN-C++)

The table 1 presents the computation time of the kNN
search process for each method and implementation listed
before. This time depends on the size of the point sets
(reference and query sets), on the space dimension, and
on the parameter k. In this paper, k£ was set to 20. The
sort used for BF methods is the insertion sort because it
provided smaller computation times than the comb sort and
the quicksort *.

In the Table 1, n corresponds to the number of reference
and query points drawn uniformly, and d corresponds to the
space dimension. The computation time, given in seconds,
corresponds respectively to the methods BF-Matlab, BF-C,
ANN-C++, and BF-CUDA. The chosen values for n and
d are typical values that can be found in papers using the
kNN search.

The main result of this paper is that CUDA allows to
greatly reduce the time needed to resolve the kNN search
problem. According to the table 1, BF-CUDA is up to
407 times faster than BF-Matlab, 295 times faster than
BF-C, and 148 times faster than ANN-C++. For instance,
with 38400 reference and query points in a 96 dimensional
space, the computation time is 57 minutes for BF-Matlab,
44 minutes for BF-C, 22 minutes for the ANN-C++, and
less than 10 seconds for the BF-CUDA. The considerable
speed up we obtain comes from the highly-parallelizable
property of the BF method.

Let us consider the case where n = 4800 (see Table 1).
The computation time seems to increase linearly with the
dimension of the points (see Fig. 4). The major difference
between these methods is the slope of the increase. For sets
of 4800 points, the slope is 0.54 for BF-Matlab method,

4Quicksort was only tested for BF-Matlab and BF-C.

0.45 for BF-C method, 0.20 for ANN-C++ method, and
quasi-null (actually 0.001) for BF-CUDA method. In other
words, all the methods are sensitive to the space dimension
in term of computation time. However, regarding to the
tested methods, the impact of the dimension on the perfor-
mances is quasi-negligible for the method BF-CUDA. This
behavior is more important for sets of 38400 points. The
slope is 31 for BF-Matlab, 29 for BF-C, 15 for ANN-C++,
and 0.087 for BF-CUDA. This characteristic is particularly
useful for applications like kNN-based content-based im-
age retrieval [1, 9]: the descriptor size is generally limited
to allow a fast retrieval process. With our CUDA imple-
mentation, this size can be much higher bringing more pre-
cision to the local description and consequently to the re-
trieval process.
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Figure 4. Evolution of the computation time as a function of the
point dimension for methods BF-Matlab, BF-C, BF-CUDA, and
ANN-C++ for a set of 4800 points (top figure). The bottom fig-
ure makes the same comparison for a set of 9600 points and only
for methods BF-CUDA and ANN-C++ to compare CUDA with
the fastest method tested. The computation time linearly increases
with the dimension of the points whatever the method used. How-
ever, the increase is quasi-null with the BF-CUDA.



| [ Methods || n=1200 [ n=2400 | n=4800 | n=9600 | n=19200 | n=38400
d=8 | BF-Matlab || 051 | 1.69 | 7.84| 3508 | 14801 629.90
BE-C 013 | 049 | 190 | 7.53| 2921 127.16
ANN-C++ || 013 | 033 | 081 | 243 6.82 |  18.38
BF-CUDA | 001 002 004 013 0.43 1.89
d=16 | BE-Matlab || 0.74 | 298 | 12.60 | 51.64 | 21090 | 893.61
BF-C 022 087 | 345| 1382 5629 | 233.88
ANN-C++ | 026 | 106 | 504 | 2397| 9133 | 31901
BF-CUDA | 001 002 0.06| 017 0.60 2.51
d=32 | BE-Matlab || 1.03 | 5.00 | 21.00 | 8433 | 323.47 | 140061
BF-C 045 | 179 751 | 3023 | 11635 | 568.53
ANN-C++ || 039 | 178 | 921 | 3937 | 16698 | 688.55
BF-CUDA | 0.01| 0.03| 0.08| 0.24 0.94 3.89
d=64 | BF-Matlab || 224 | 937 | 38.16 | 149.76 | 606.71 | 2353.40
BF-C 171|728 | 2611 | 11191 | 45549 | 1680.37
ANN-C++ || 078 | 356 | 1466 | 5928 | 24298 | 1008.84
BF-CUDA | 0.02| 004 | 01| 040 1.57 6.65
d=80 | BF-Matlab || 235 | 11.53 | 47.11 | 188.10 | 729.52 | 2852.68
BF-C 213 | 843 | 3340 | 14507 | 53044 | 2127.08
ANN-C++ || 098 | 429 | 1722 7322| 30244 | 117639
BF-CUDA | 0.02| 004 | 03| 048 1.98 8.17
d=96 | BF-Matlab || 3.30 | 13.89 | 55.77 | 231.69 | 901.38 | 3390.45
BF-C 2.54 | 1056 | 39.26 | 168.58 | 674.88 | 2649.24
ANN-C++ 120 | 496 | 19.68 | 8245 | 339.81 | 133435
BE-CUDA | 0.02| 005| 05| 057 2.29 9.61

Table 1. Comparison of the computation time, given in seconds, of the methods BF-Matlab, BF-C, ANN-C++, and BF-CUDA. BF-CUDA
is up to 407 times faster than BF-Matlab, 295 times faster than BF-C, and 148 times faster than ANN-C++.

Fig. 5 shows the computation time as a function of the
number of points n. The computation time increases poly-
nomially with n except for the BF-CUDA which seems
rather insensitive to n in the range of test.

Table 1 gives the computation time of the whole kNN
search process. We studied how this total time decomposes
between each step of the BF method as a function of
parameters n, d, and k. This was done with the CUDA
profiler’ (see Tables 2, 3, and 4). Remember that n?
distances are computed and n sortings are performed. The
time proportion spent for distance computation increases
with n and d. On the opposite, the time proportion spent for
sorting distances increases with k, as seen in Section 3.2.
In the case where n = 4800, d = 32, and k = 20, the total
time decomposes in 66% for distance computation and 32%
for sorting. The remaining time is mainly spent in memory
transfer from host (CPU) to device (GPU) and conversely.
As a comparison, table 5 presents the time decomposition
for BF-C. Ninety-one percent of the time is dedicated to
distance computation and 4% to sorting. In CUDA, the
full parallelization of the n? distance computations makes
the decomposition between distance computation and

5The CUDA profiler is downloadable on the NVIDIA forum.
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Figure 5. Evolution of the computation time as a function of the
number of points for methods BF-Matlab, BF-C, BF-CUDA, and
ANN-C++. In this table, D was set to 32 and k was set to 20.
The computation time polynomially increases with the number of
points whatever the method used. However, in comparison to other
methods, the increase is quasi-null with the BF-CUDA.

sorting more balanced while BF-C spends most of the time
computing the distances, the sorting representing only a
small overhead made of comparisons and swapping.



n [ 2400 | 4800 | 9600 |
Distance 28% 51% 59%
Sort 70% 47% 40%
Memory copy 2% 2% 1%
Total time 0.023s | 0.055s | 0.169s

Table 2. Computation time decomposition for each step of the BF
algorithm implemented in CUDA as a function of the size n of the
point sets. In this table, d = 16 and k£ = 20.

i [ 8] 16] 32|
Distance 37% 51% 66%
Sort 62% 47% 32%
Memory copy 1% 2% 2%
Total time 0.040s | 0.055s | 0.076s

Table 3. Computation time decomposition for each step of the BF
algorithm implemented in CUDA as a function of the dimension
d. In this table, n = 4800 and k& = 20.

k I 5] 10 | 20 |
Distance 82% 1% 51%
Sort 15% 26% 47%
Memory copy 3% 3% 2%
Total time 0.033s | 0.037s | 0.055s

Table 4. Computation time decomposition for each step of the BF
algorithm implemented in CUDA as a function of k. In this table,
n = 4800 and d = 16.

’ H Distance \ Sort \ Total time ‘

CPU 91% 4% 7.51s
GPU 66% | 32% 0.076s
Table 5. Comparison of the computation time decomposition for
BF-C (CPU) and BF-CUDA (GPU) implementation. In this table,
n = 4800, d = 32, and k = 20. First, the CUDA implementation
is 100 times faster than the C implementation. Second, the com-
putation time decomposition between distance computation and
sorting is more balanced with CUDA: the distance computation is
more costly; however, CUDA allows its full parallelization.

Until now, the studies rely on synthetically generated
sets of points. The CUDA implementation of the kNN
search has also been used in a real-world image retrieval
task [1, 9]. The authors propose a retrieval method based
on a multiscale approach. A set of feature vectors is defined
at each scale. The vector dimension is either 18 or 27, and
the size of the vector sets varies between 4800 and 1200
depending on the scale. Kullback-Leibler divergences are
then combined into a similarity measure to compare two
images. The authors noticed that our CUDA implementa-
tion of the BF algorithm outperformed the “smarter” ANN
implementation by a factor of 10 at least (0.2s to compare
two images with CUDA instead of 2.2s with ANN).

4. Conclusion

In this paper, we proposed a fast, parallel k& nearest
neighbor (kNN) search implementation using a graphics
processing units (GPU). We showed that the use of the
NVIDIA CUDA API accelerates the kNN search by up to
a factor of 400 compared to a brute force CPU-based im-
plementation. In particular, this improvement can have a
significant impact in content-based image retrieval applica-
tions which use kNN.
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