
K-NEAREST NEIGHBOR SEARCH: FAST GPU-BASED IMPLEMENTATIONS
AND APPLICATION TO HIGH-DIMENSIONAL FEATURE MATCHING

Vincent Garcia1, Éric Debreuve2, Frank Nielsen1,3, Michel Barlaud2

1École Polytechnique, Laboratoire d’informatique LIX, 91128 Palaiseau Cedex, France
2Laboratoire I3S, 2000 route des lucioles, BP 121, 06903 Sophia Antipolis Cedex, France

3Sony CSL 3-14-13 Higashi Gotanda, Shinagawa-Ku, 141-0022 Tokyo, Japan

Fig. 1. Illustration of the kNN search problem in R2 with k = 3
using the Euclidean distance.

ABSTRACT

The k-nearest neighbor (kNN) search problem is widely used in do-
mains and applications such as classification, statistics, and biol-
ogy. In this paper, we propose two fast GPU-based implementa-
tions of the brute-force kNN search algorithm using the CUDA and
CUBLAS APIs. We show that our CUDA and CUBLAS implemen-
tations are up to, respectively, 64X and 189X faster on synthetic data
than the highly optimized ANN C++ library, and up to, respectively,
25X and 62X faster on high-dimensional SIFT matching.

Index Terms— k-nearest neighbors, GPU, CUDA/CUBLAS,
SIFT

1. INTRODUCTION

The k-nearest neighbor (kNN) search is a problem found in many
research and industrial domains such as 3-dimensional object ren-
dering, content-based image retrieval [1], statistics (estimation of
entropies and divergences [2]), biology (gene classification [3]). . .

Let us consider a setR of m reference pointsR = {r1, r2, · · · ,
rm} defined in a d-dimensional space, and let q be a query point de-
fined in the same space. The kNN search problem consists in deter-
mining the k points closest to q among R. The distance considered
between two points is not restricted to the Euclidean distance. For
some applications, other distances are indeed more adapted to the
nature of points (e.g., a mutual information-based metric in the case
of histograms). Figure 1 illustrates an example of the kNN search
problem in a 2-dimensional space for k = 3 using the Euclidean
distance. The blue dots are the reference points and the red cross is
the query point.

The exhaustive search, also called brute-force algorithm, is a
basic kNN search method consisting in computing the distances be-
tween the query point and each of the reference points. Then, the
k-nearest neighbors are trivially determined using a sorting algo-

rithm. Behind its apparent simplicity, this algorithm is highly de-
manding in terms of computation time. In the last decades, several
approaches [4, 5] have been proposed with one common goal: to re-
duce the computation time. These methods generally seek to reduce
the number of distances that have to be computed using, for instance,
a pre-arrangement of the data. The direct consequence is a speed-up
of the searching process. However, in spite of this improvement,
the computation time required by the kNN search still remains the
bottleneck of methods based on kNN.

General-purpose computing on graphics processing units (GPGPU)
is the technique of using a Graphics processing unit (GPU) to per-
form the computations usually handled by the CPU. The key idea
is to use the parallel computing power of the GPU to achieve sig-
nificant speed-ups. Numerous recent publications use the GPU pro-
gramming to speed-up their methods [6, 7]. In a previous work [8],
we showed that the implementation of the brute-force method using
GPU programming (through NVIDIA CUDA) enables to greatly
reduce the computation time in comparison to a similar C imple-
mentation and to the highly optimized ANN C++ library [4]. In this
paper, we modify our approach in order to use the CUBLAS library
(CUDA implementation of the BLAS library). We show that the
new method/implementation is up to 189 times faster than ANN and
up to 4 times faster than our previous approach. Experiments on
high dimensional feature matching (SIFT [9]) are reported.

2. BRUTE-FORCE KNN SEARCH AND GPU
IMPLEMENTATION

2.1. Algorithm

Let us consider a setR ofm reference pointsR = {r1, r2, · · · , rm}
in a d-dimensional space and a set Q of n query points Q = {q1,
q2, · · · , qn} in the same space. Given a query point q ∈ Q, the
brute-force algorithm (denoted by BF) is composed of the following
steps:

1. Compute the distance between q and the m reference points
ofR;

2. Sort the m distances;
3. The k-nearest neighbors of q are the k points of R corre-

sponding to the k lowest distances. The output of the algo-
rithm can be the ordered set of these k distances, the set of the
k neighbors (actually their indices in R) ordered by increas-
ing distance, or both.

If we apply this algorithm for the n query points and if we con-
sider the typical case of large sets (both references and queries), the
complexity of this algorithm is overwhelming: O(nmd) multiplica-
tions for the n × m distances computed and O(nm logm) for the



n sorting processes. However, the BF method is by nature highly-
parallelizable and, as a consequence, is perfectly suitable for a GPU
implementation.

2.2. CUDA implementation

In a recent publication [8], we proposed a GPU implementation of
the BF method. This implementation was written using the API
NVIDIA CUDA and was composed of two kernels (CUDA func-
tions):

1. The first kernel computed the distance matrix of size m × n
containing the distances between the n query points and the
m reference points. The computation of this matrix was fully
parallelized since the distances between pairs of points are
independent: each thread computed the distance between a
given query point qi and a given reference point rj ;

2. The second kernel sorted the distance matrix. The n sort-
ing processes (one for each query point) were parallelized
since they are independent: each thread sorted all the dis-
tances computed for a given query point.

The sorting algorithm used was a modified version of the insertion
sort. Let us assume that the first k element of the arrayD are already
sorted, the proposed version insert an element (let’s say the l-th el-
ement) into the correct position only if D[l] < D[k]. For small
values of k, the proposed sorting algorithm appears to be faster than
the efficient comb sort algorithm.

Besides the distances, in case the indices of the k-nearest neigh-
bors were also needed, an index matrix of sizem×n and containing
on each column the indices of the reference points per query was de-
fined, each column being initialized with the vector (1, 2, . . .m)>,
where M> denotes the transpose of M . The element insertion per-
formed in the distance matrix as part of the sorting processes were
simultaneously applied to the index matrix so that, in the end, its
uppermost k × n-submatrix corresponded to the queries k-nearest
neighbor indices ordered by increasing distance.
Working with an initial m × n-index matrix represents a waste of
memory. A simple “trick” allows us to work with a k × n-index
matrix from the beginning, thus avoiding the (m− k)× n memory
overhead. The sorting process deals with each array column mono-
tonically from the first to the last element. Consequently, at each it-
eration, the index of the considered reference point is known. While
sorting, if the l-th element needs to be inserted into the distance ma-
trix, the index value l is also inserted into the k × n-index matrix at
the exact same position, iteratively filling in the whole matrix.

The main result of [8] is that the proposed CUDA implementa-
tion was up to 300X faster than a similar C implementation and up
to 150X faster than the highly optimized ANN C++ library [4].

2.3. CUBLAS implementation

BLAS is the celebrated, highly optimized linear algebra library spe-
cialized in vector/matrix operations. CUBLAS is the CUDA imple-
mentation of BLAS and improves the performance of the classical
BLAS functions. The CUDA implementation of the kNN search [8]
was very efficient in terms of computation time. The distance matrix
computation represented the main part of the computation time. In
this paper, we show that we can greatly improve the global perfor-
mances of the kNN search by reformulating the way to compute the
distance matrix and by using the CUBLAS library.
Let us consider two points x and y in a d-dimensional space

x = (x1, x2, · · ·xd)>, y = (y1, y2, · · · yd)>, (1)

where M> denotes the transpose of M . The classical way to com-
pute the Euclidean distance, denoted by ρ, between x and y is

ρ(x, y) =

vuut dX
i=1

(xi − yi)2. (2)

However, this distance computation can be rewritten to involve ma-
trix additions and multiplications

ρ2(x, y) = (x− y)>(x− y) = ‖x‖2 + ‖y‖2 − 2x>y (3)

where ‖.‖ is the Euclidean norm. The square root is then computed
at the end. This approach can be extended to handle sets of points.
LetR andQ be two matrices of size d×m and d×n, resp., contain-
ing the m reference points and the n query points, respectively. The
m×n-matrix ρ2(R,Q) containing all the pairwise squared distances
between query points and reference points is given by

ρ2(R,Q) = NR +NQ − 2R>Q. (4)

The elements of the ith row of NR are all equal to ‖ri‖2. The el-
ements of the jth column of NQ are all equal to ‖qj‖2. The way
ρ2(R,Q) is expressed in Eq. (4) (i.e., through matrix additions and
multiplications) is perfectly adapted to a CUBLAS implementation
(only NR and NQ have to be computed separately using for in-
stance a CUDA kernel). However, this method is highly demanding
in terms of memory usage and need to be optimized. Indeed, NR,
NQ, and R>Q are stored in three matrices of size m×n. Neverthe-
less, the matrices NR and NQ have a specific form. To optimize the
memory usage, we took advantage of this: we stored NR and NQ as
vectors of dimension 1×m and 1×n, respectively. The ith element
of NR is equal to ‖ri‖2, and similarly for NQ. Then, the addition
and subtraction in Eq. (4) were handled by classical CUDA kernels.
The proposed kNN search implementation is then based on CUDA
and CUBLAS and is composed of the following kernels:

1. Compute the vector NR using CUDA (coalesced read/write);

2. Compute the vector NQ using CUDA (coalesced read/write);

3. Compute the m× n-matrix A = −2R>Q using CUBLAS;

4. Add the ith element of NR to every element of the ith row of
the matrix A using CUDA (grid of m × n threads, non coa-
lesced read/write: use of the shared memory); The resulting
matrix is denoted by B;

5. Sort in parallel each column of B (with n threads) using the
modified insertion sort proposed in [8]; The resulting matrix
is denoted by C;

6. Add the j th value of NQ to the first k elements of the j th

column of the matrix C using CUDA (coalesced read/write);
The resulting matrix is denoted by D;

7. Compute the square root of the first k elements ofD to obtain
the k smallest distances (coalesced read/write); The resulting
matrix is denoted by E;

8. Extract the uppermost k × n-submatrix of E; The resulting
matrix is the desired distance matrix for the k-nearest neigh-
bors of each query.

Note that the matrix names were given for algorithmic clarity only.
Actually, once A is computed, all the remaining computations are
done “in place”, meaning that the matrices from A to E are in fact a
single matrix occupying a unique area of memory.

The main computation task (i.e., the computation of A in ker-
nel 3) is performed by CUBLAS. The addition of NQ to C and the



computation of the square root can be done after the sorting process
since these steps do not influence the distance order. By applying
these two kernels (6 and 7) at the end of the procedure, the compu-
tation time is reduced since only the first k elements of each column
are processed.

If the matrix A does not fit into the GPU memory, the query
points are splitted, processed separately, and the distances to the
k-nearest neighbors are then merged together on the CPU/classical
memory side.

As explained in Section 2.2, if the indices of the k-nearest neigh-
bors are also required, an index matrix I of size k × n is defined. In
the kernel 5, the distance ordering is replicated in this index matrix.

2.4. Source code

The source code corresponding to this paper, as well as the code for
the paper [8], are available at:
http://www.i3s.unice.fr/˜creative/KNN under a Creative
Common License. They are proposed in two versions: one com-
puting only the distances to the k-th nearest neighbors, the second
computing both the distances and the corresponding neighbor in-
dices. In the experiments, we used the second (thus slowest) version.

3. EXPERIMENTS

We compared our CUDA and CUBLAS implementations to one of
the fastest kNN search method: the C++ library ANN [4]. CUDA
will refer to the fully CUDA-based algorithm proposed in [8],
CUBLAS will refer to the mixed CUBLAS/CUDA algorithm pro-
posed in this paper, and ANN will refer to the C++ ANN library.
The three algorithms were compared using Matlab (The MathWorks,
Inc.) Mex files.

The computer used for this comparison was a Dell Precision
M6400 laptop (Intel Core 2 duo/2.53GHz, 4Go DDR2 memory,
NVIDIA Quadro FX 3700M) with Microsoft Windows XP 32 bits,
NVIDIA CUDA 2.2, and Matlab 2007b.

3.1. kNN search on synthetic datasets

We compared the computation times of the three algorithms for syn-
thetic datasets. The points (references and queries) were randomly
drawn from a normal distribution N (0, 1). In this experiment, n =
m denotes the number of points (identical for references and queries)
and k (the number of neighbors to consider) was set equal to 20 (as
a reminder, d is the dimension of the points).

Table 1 shows the evolution of the computation time for different
values of n and d for each algorithm. Figure 2 shows the evolution of
the log-computation time as a function of d and n, respectively. The
computation time increases with n and d for all three algorithms.
For ANN, this was expectable. When checking Fig. 2, one can note
that the parallelization (CUDA and CUBLAS) is “better achieved”
in terms of the dimension than in terms of the number of points.
Moreover, regarding the dimension, CUBLAS is closer to the full
parallel performances (flat curve) than CUDA.

ANN is consistently faster than CUDA and CUBLAS only for
small dimensions (d ≤ 4) or small number of points (n ≤ 256). In-
deed, in such cases, CUDA and CUBLAS are penalized by the time
needed to transfer data from host memory (CPU) to device memory
(GPU) and back. For high dimensions and large number of points
(usually the case in practice), this penalty becomes negligible com-
pared to the gain in computation time achieved by parallelization.
In such conditions, CUDA and CUBLAS were up to 64X and 189X
faster than ANN, respectively.

Fig. 2. Log-computation time as a function (Top) of d for k = 20
and n = 16384, and (Bottom) of n for k = 20 and d = 32.

CUBLAS appears faster than CUDA (up to 4X faster) for high
dimensional spaces and large datasets. For small values of d and n,
CUDA is faster than CUBLAS due to the smaller number of kernels
called (2 instead of 7), each kernel costing some time to be called:
the time needed to compute the distances for CUDA (1 kernel) is too
small to be efficiently replaced by the 6 CUBLAS kernels. Again, in
practice, spaces are of high dimension and datasets are large.

3.2. kNN search applied to high-dimensional SIFT matching

We compared the computation times of the three algorithms in the
context of high-dimensional SIFT [9] feature matching. This kind of
matching can be found in applications such as content-based image
retrieval: SIFT features are extracted from a set of reference images
and stored into a database. Then, given a query image I , the retrieval
process extracts SIFT features from I and, for each of them, finds the
k closest features in the database. Finally, a voting algorithm enables
to determine the images most similar to I in the image database.

For this experiment, we considered a setQ of 1024 query points
(SIFT features), which is approximately the usual number of fea-
tures extracted from a single image. The reference set R contained
from 27 = 128 to 216 = 65536 points. These two sets of SIFT
features correspond to a subset of the features extracted from the
INRIA Holidays dataset [10]. The dimension of a SIFT feature is



Method n=256 n=512 n=1024 n=2048 n=4096 n=8192 n=16384 n=32768 n=65536
ANN 0.001 0.002 0.004 0.007 0.015 0.031 0.063 0.132 0.277

d=1 CUDA 0.042 0.046 0.054 0.063 0.081 0.154 0.480 2.489 8.302
CUBLAS 0.042 0.047 0.055 0.066 0.091 0.213 0.698 1.615 5.694
ANN 0.003 0.005 0.012 0.027 0.059 0.125 0.275 0.591 1.364

d=4 CUDA 0.042 0.048 0.055 0.066 0.086 0.176 0.561 2.591 8.425
CUBLAS 0.042 0.048 0.057 0.068 0.093 0.220 0.733 1.812 6.076
ANN 0.007 0.028 0.109 0.385 1.421 5.468 20.289 84.503 378.496

d=16 CUDA 0.043 0.049 0.056 0.070 0.105 0.247 0.805 2.542 8.900
CUBLAS 0.044 0.049 0.056 0.067 0.092 0.203 0.791 2.123 7.225
ANN 0.017 0.073 0.299 0.949 3.279 13.365 74.183 313.527 1296.367

d=64 CUDA 0.044 0.050 0.062 0.087 0.176 0.528 1.950 5.518 20.441
CUBLAS 0.044 0.049 0.057 0.069 0.102 0.242 0.904 3.104 10.887
ANN 0.051 0.194 0.742 2.933 14.579 76.454 334.509 1053.819 3559.731

d=256 CUDA 0.045 0.055 0.081 0.159 0.459 1.641 6.910 19.381 75.718
CUBLAS 0.044 0.050 0.060 0.079 0.146 0.405 2.394 7.157 29.480

Table 1. Computation times (in seconds) for the kNN search. CUDA and CUBLAS are up to 64X and 189X faster than ANN, respectively.

Fig. 3. Speed-up between every pair of algorithms as a function of
the number of reference SIFT features (d = 128, k = 20).

128 and k was set equal to 20. Figure 3 shows the evolution of
the speed-up between every pair of algorithms among the three as a
function of the number of reference SIFT features. The curve “Alg1
vs. Alg2” must be interpreted as the computation time of Alg1 di-
vided by the computation time of Alg2. Therefore, when the curve
is higher than one, it means that Alg2 is faster than Alg1 by a fac-
tor equal to the curve level. The speed-up achieved by CUDA or
CUBLAS in comparison with ANN increased significantly with the
number of features. The speed-up achieved by CUBLAS in compar-
ison with CUDA increased much less. Indeed, both algorithms have
recourse to parallelization. However, CUBLAS computes and sorts
the distances more efficiently. In this experiment, CUDA was up to
25X faster than ANN, CUBLAS was up to 62X faster than ANN,
and CUBLAS is up to 2.5X faster than CUDA.

4. CONCLUSION

We proposed two fast GPU-based implementations of the naive
brute-force k-nearest neighbor (kNN) search algorithm based on
the APIs CUDA and CUBLAS. In our experiments, CUDA and
CUBLAS implementations were up to 64X and 189X faster, respec-

tively, on synthetic data than the highly optimized ANN C++ library,
and up to 25X and 62X faster, respectively, on high-dimensional
SIFT matching.

5. REFERENCES

[1] H. Zhang, A. C. Berg, M. Maire, and J. Malik, “SVM-KNN:
Discriminative nearest neighbor classification for visual cate-
gory recognition,” in International Conference on Computer
Vision and Pattern Recognition, New York (NY), USA, 2006.

[2] M. N. Goria, N. N. Leonenko, V. V. Mergel, and P. L. Novi
Inverardi, “A new class of random vector entropy estimators
and its applications in testing statistical hypotheses,” J. Non-
parametr. Stat., vol. 17, pp. 277–297, 2005.

[3] F. Pan, B. Wang, X. Hu, and W. Perrizo, “Comprehensive ver-
tical sample-based knn/lsvm classification for gene expression
analysis,” J. Biomed. Inform., vol. 37, pp. 240–248, 2004.

[4] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and
A. Y. Wu, “An optimal algorithm for approximate nearest
neighbor searching fixed dimensions,” Journal of the ACM,
vol. 45, pp. 891–923, 1998.

[5] H. Jégou, M. Douze, and C. Schmid, “Searching with quanti-
zation: approximate nearest neighbor search using short codes
and distance estimators,” Tech. Rep. RR-7020, INRIA, 2009.

[6] D. Qiu, S. May, and A. Nüchter, “GPU-accelerated nearest
neighbor search for 3D registration,” in International Confer-
ence on Computer Vision Systems, Liège, Belgium, 2009.

[7] Y. Zhuge, Y. Cao, and R.W. Miller, “GPU accelerated fuzzy
connected image segmentation by using CUDA,” in Engineer-
ing in Medicine and Biology Conference, Minneapolis (MN),
USA, 2009.

[8] V. Garcia, É. Debreuve, and M. Barlaud, “Fast k nearest neigh-
bor search using gpu,” in CVPR Workshop on Computer Vision
on GPU, Anchorage (AK), USA, 2008.

[9] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” Int. J. Comput. Vision, vol. 60, pp. 91–110, 2004.

[10] H. Jégou, M. Douze, and C. Schmid, “Hamming embed-
ding and weak geometric consistency for large scale image
search,” in European Conference on Computer Vision, Mar-
seille, France, 2008.


