Public Member Functions | |
| double | F (PVectorMatrix T) |
Computes the log normalizer . | |
| PVectorMatrix | gradF (PVectorMatrix T) |
Computes . | |
| double | G (PVectorMatrix H) |
Computes . | |
| PVectorMatrix | gradG (PVectorMatrix H) |
Computes . | |
| PVectorMatrix | t (PVector x) |
Computes the sufficient statistic . | |
| double | k (PVector x) |
Computes the carrier measure . | |
| PVectorMatrix | Lambda2Theta (PVectorMatrix L) |
| Converts source parameters to natural parameters. | |
| PVectorMatrix | Theta2Lambda (PVectorMatrix T) |
| Converts natural parameters to source parameters. | |
| PVectorMatrix | Lambda2Eta (PVectorMatrix L) |
| Converts source parameters to expectation parameters. | |
| PVectorMatrix | Eta2Lambda (PVectorMatrix H) |
| Converts expectation parameters to source parameters. | |
| double | density (PVector x, PVectorMatrix param) |
Computes the density value . | |
| PVector | drawRandomPoint (PVectorMatrix L) |
| Draws a point from the considered distribution. | |
| double | KLD (PVectorMatrix LP, PVectorMatrix LQ) |
| Computes the Kullback-Leibler divergence between two multivariate Gaussian distributions. | |
where
are the natural parameters. This class implements the different functions allowing to express a multivariate Gaussian distribution as a member of an exponential family.


| double jMEF.MultivariateGaussian.density | ( | PVector | x, | |
| PVectorMatrix | param | |||
| ) |
Computes the density value
.
| x | point | |
| param | parameters (source, natural, or expectation) |
| PVector jMEF.MultivariateGaussian.drawRandomPoint | ( | PVectorMatrix | L | ) |
Draws a point from the considered distribution.
| L | source parameters |
| PVectorMatrix jMEF.MultivariateGaussian.Eta2Lambda | ( | PVectorMatrix | H | ) |
Converts expectation parameters to source parameters.
| H | expectation parameters |
| double jMEF.MultivariateGaussian.F | ( | PVectorMatrix | T | ) |
Computes the log normalizer
.
| T | natural parameters |
| double jMEF.MultivariateGaussian.G | ( | PVectorMatrix | H | ) |
Computes
.
| H | expectation parameters |
| PVectorMatrix jMEF.MultivariateGaussian.gradF | ( | PVectorMatrix | T | ) |
Computes
.
| T | natural |
| PVectorMatrix jMEF.MultivariateGaussian.gradG | ( | PVectorMatrix | H | ) |
Computes
.
| H | expectation parameters |
| double jMEF.MultivariateGaussian.k | ( | PVector | x | ) |
Computes the carrier measure
.
| x | a point |
| double jMEF.MultivariateGaussian.KLD | ( | PVectorMatrix | LP, | |
| PVectorMatrix | LQ | |||
| ) |
Computes the Kullback-Leibler divergence between two multivariate Gaussian distributions.
| LP | source parameters | |
| LQ | source parameters |
| PVectorMatrix jMEF.MultivariateGaussian.Lambda2Eta | ( | PVectorMatrix | L | ) |
Converts source parameters to expectation parameters.
| L | source parameters |
| PVectorMatrix jMEF.MultivariateGaussian.Lambda2Theta | ( | PVectorMatrix | L | ) |
Converts source parameters to natural parameters.
| L | source parameters |
| PVectorMatrix jMEF.MultivariateGaussian.t | ( | PVector | x | ) |
Computes the sufficient statistic
.
| x | a point |
| PVectorMatrix jMEF.MultivariateGaussian.Theta2Lambda | ( | PVectorMatrix | T | ) |
Converts natural parameters to source parameters.
| T | natural parameters |
1.5.9