Public Member Functions | |
| double | F (PVector T) |
Computes the log normalizer . | |
| PVector | gradF (PVector T) |
Computes . | |
| double | G (PVector H) |
Computes . | |
| PVector | gradG (PVector H) |
Computes . | |
| PVector | t (PVector x) |
Computes the sufficient statistic . | |
| double | k (PVector x) |
Computes the carrier measure . | |
| PVector | Lambda2Theta (PVector L) |
| Converts source parameters to natural parameters. | |
| PVector | Theta2Lambda (PVector T) |
| Converts natural parameters to source parameters. | |
| PVector | Lambda2Eta (PVector L) |
| Converts source parameters to expectation parameters. | |
| PVector | Eta2Lambda (PVector H) |
| Converts expectation parameters to source parameters. | |
| double | density (PVector x, PVector param) |
Computes the density value . | |
| PVector | drawRandomPoint (PVector L) |
| Draws a point from the considered distribution. | |
| double | KLD (PVector LP, PVector LQ) |
| Computes the Kullback-Leibler divergence between two univariate Gaussian distributions. | |
Static Public Member Functions | |
| static double | Rand (double mu, double sigma) |
| Box-Muller transform/generator. | |
| static double | Rand () |
| Box-Muller transform/generator. | |
where
are the natural parameters. This class implements the different functions allowing to express a univariate Gaussian distribution as a member of an exponential family.


Computes the density value
.
| x | point | |
| param | parameters (source, natural, or expectation) |
Draws a point from the considered distribution.
| L | source parameters |
Converts expectation parameters to source parameters.
| H | natural parameters |
| double jMEF.UnivariateGaussian.F | ( | PVector | T | ) |
Computes the log normalizer
.
| T | parameters |
| double jMEF.UnivariateGaussian.G | ( | PVector | H | ) |
Computes
.
| H | expectation parameters |
Computes
.
| T | natural parameters |
Computes
.
| H | expectation parameters |
| double jMEF.UnivariateGaussian.k | ( | PVector | x | ) |
Computes the carrier measure
.
| x | a point |
Computes the Kullback-Leibler divergence between two univariate Gaussian distributions.
| LP | source parameters | |
| LQ | source parameters |
Converts source parameters to expectation parameters.
| L | source parameters |
Converts source parameters to natural parameters.
| L | source parameters |
| static double jMEF.UnivariateGaussian.Rand | ( | ) | [static] |
Box-Muller transform/generator.
where
| static double jMEF.UnivariateGaussian.Rand | ( | double | mu, | |
| double | sigma | |||
| ) | [static] |
Box-Muller transform/generator.
| mu | mean | |
| sigma | variance |
where
Computes the sufficient statistic
.
| x | a point |
Converts natural parameters to source parameters.
| T | natural parameters |
1.5.9